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I. INTRODUCTION

Although many computer programs for the solution of space-charge

electron flow problems exist,1 -4 there is a need for a program which is

user friendly, well documented, portable, versatile, and, most impor-

tantly, available at no cost to the scientific and industrial community.

This report describes the project to design and implement a

deformable triangle mesh computer program which solves the space-charge

electron flow problem. The computer program was implemented on an HP-

1000 computer at Teledyne HEC in Palo Alto, California. N ,

The analysis of the space-charge flow problem consists of two

parts:

1. Solving Poisson's equation

2. Solving the equation of motion for electrons derived from the U
Lorentz force equation

To solve Poisson's equation, the set of codes developed by Halbach and

Holsinger,5 "Poisson Group Programs," was used. These codes were chosen

because of their reliable results, ability to solve both electrostatic

and magnetostatic problems, and the option to change the permittivity or

permeability in different regions. The solution of the Lorentz force

equation follows work published by R. True,6 and by Caplan and Thoring-

ton,7 with some modifications. 4.

For this project, the following objectives have been achieved:

1. The computer program is user friendly. In most deformable 0 q

mesh programs, the generation of the analysis mesh is

r J, r W %1'.- I

r -, ,.-



particularly troubl.esome. To generate the triangular mesh, a

nodal diagram must be constructed, and the nodal indices of L

all boundary nodes must be determined. The nodal indices, as

well as the corresponding physical boundary points, must be

supplied as input to the program. This is a somewhat time-

consuming process which requires some experience. In order to

avoid this problem, the Poisson group programs include an

automatic mesh generation program called AUTOMESH. AUTOMESH -

constructs the "logical" mesh and generates (x, y) coordinate

data which describes the physical boundary.

2. The program is well documented and portable. The computer

code is written in ANSI Standard FORTRAN 77, so the program

may be transferred between computers. Since the program is *,* J

well documented, it is more readable and, hence, easier to

understand, use, and modify.

3. The computer code is very versatile. For two-dimensional

problems in rectangular or cylindrical geometry, it will

solve:

a. Space-charge flow problems l o.

b. Electrostatic problems

c. Nonlinear magnetostatic problems with saturated permea-

bilities.

In the future, the ability to solve for the electrostatic and

nonlinear magnetostatic fields from the same mesh will be

incorporated into the code.

-2-
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4. The computer program is available to the scientific and indus-

trial community from the University of Utah.

In this report, the results of the performance of the deformable mesh

program are presented. Program accuracy for several test cases are

discussed, and comparisons are made with theoretical and experimental

results. The User's Manual for the program will be provided on request

with the code.
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II. SPACE-CHARGE FLOW

2.1 The Space-Charge Flow Problem

Two sets of basic equations are required in space-charge flow.

The first set consists of the equations obeyed by the static fields,

assuming that the charge and current densities are known. The second

set predicts the motion of the particles in given electrostatic and

magnetostatic fields. The first set can be deduced from Maxwell's

equations. The second set can be deduced from the Lorentz force law,

with the help of the field equations.

The electric field E and the magnetic field B must obey Maxwell's

equations, which take the form, for steady-state flows in a vacuum,

r+ _) - (1)

0 +

S- 0 (2)

V * B -0 (3)

+ + %w

V X B 1 (4)
0

where p and i are charge and current densities. ~~h

From Eq. 1, it is possible to def ine an electric scalar potential

V so that ~.

E -- VV (5)

4I
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Vith the V of Eq. 5, it Is possible to derive Poisson's equation from

Eq. 1.

v • Cv) - - (6)
C!r 0

The second set of equations which govern the motion of the particles in

the field are deduced from the Lorentz force law. The force F on a

particle in an electromagnetic field is

E q(~ + vXB (7)

where v is the velocity of the particle. From Eq. 7, the acceleration

and velocity of an electron are determined in terms of the fields in the

system* The fields which affect the electron motion consist of two 1

parts: ,

1. Those set up by the electrodes and external magnetic sources

2. Those due to the electrons in the beam.

Although Eq. 4 is the exact equation obeyed by the magnetic field, for

nonrelativistic velocities, it is usually reasonable to neglect the

self-magnetic field due to the beam itself. The self magnetic forces on

a particle are usually small compared with the space-charge forces.
8  .

'F 

,.
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2.2 Solution of the Space-Charge Flow Problem

A deformable mesh electron gun analysis program solves the space-

charge flow problem by computing in a self-consistent way the poten-

tials, current density, electron trajectories, and space-charge distri-

bution.

The general method of solution is shown in the flow chart of Fig.

1. The iterative process can be described as follows:

1. Solve for the potential at each mesh point given the boundary P_-I

conditions, and space-charge density at each mesh point by *.W

using Poisson's equation,

V -- : (8) .0 -.

2. Calculate the current density along the cathode and the P

emitted current using Child's law,

V 3 ' 2 (9)
J k d2  (9

3. Compute the electron trajectories from the Lorentz force

equation,

. q(. + x B) (10)

given the electric and magnetic fields.

4. Assign charge to each node the electron passes near.

5. Repeat steps 1 through 4 until the process is self-consistent.

-6-
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III. SOLUTION OF POISSON'S EQUATION

3.1 Choice of Method

The nonlinear, two-dimensional Poisson equation is solved by the

finite difference method using a nonuniform triangular mesh. The advan-

tages of the triangular mesh for the numerical solution of partial

differential equations in two dimensions were first pointed out in 1943

by Courant.9  Later papers by True 0 and Cattelinoll give examples

demonstrating the advantages and disadvantages of this technique. The

most important advantage of the deformable triangle mesh compared to the

rectangular mesh is that the mesh density can be selectively varied

within the analysis region. The mesh density can be increased in

regions where the mesh spacing must be small compared to the features

being modeled, and the density can be decreased in regions where the

field gradients are small. Therefore, there is no need to increase the

number of nodes and, hence, the number of calculations remain the same.

Other advantages of triangular mesh analysis over the rectangular

mesh analysis include:

1. Boundary positions are fixed and mesh nodes are positioned to

lie exactly on the boundaries. This is not the case in the

rectangle mesh analysis.

2. Errors in the potential are generally reduced because each

mesh point has six neighbors instead of four.

3. Since a high density "cathode mesh" is generated near the

cathode, a large Improvement in the accuracy of calculated

values for emission current density and perveance is obtained.

.0~~~~- 14' 
J 
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As might be expected, there are also some disadvantages in the

triangular mesh analysis technique. The use of a triangular mesh .O-

results in considerably more complex programming logic as compared with

the rectangular analysis. Other disadvantages include:

1. More computer storage is needed per mesh point. This is due

to saving three coupling coefficients and (x, y) coordinates ,.

of each mesh point in addition to the voltage and space-charge

density at that point.

2. Increase in time needed to compute the trajectories caused by '

the need to search for the nearest mesh point after every time

step. °0.

Thus, the increased accuracy obtained is at the price of producing

a more complicated program. However, these effects are not drastic and,

in cases such as the gridded gun where accuracy is needed in one region

and unnecessary in other regions, the triangular mesh analysis is the

best way to proceed.

3.2 Description of the Method

The detailed derivation of the equations for the finite difference

approximations on a general triangle mesh are found in Winslow.1 2 The

equations that are used in the computer program are summarized in Sec-

tions 3.3 and 3.4.

Poisson 'a equation,

v • rVJ . * .- h

V- (- VV (11)

-9-
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is to be solved over a region R, where the permittivity er is a positive

function of the rectangular coordinates (x, y), and the charge density p

is a given function of (z, y).

The basic assumptions of the finite difference method are:

. The boundaries and interfaces of the region R are approximated

by straight-line segments.

2. The region Is triangulated.

3. The values of the potential V are defined at triangle vertices L--

and V Is assumed to vary linearly over each triangle.

4. The charge density and permittivity are assumed to be constant

over each triangle.

3.3 Difference Equations

The triangulation used in this method is topologically regular;

six triangles meet at every interior mesh point. Consider an interior

esh point in the triangular mesh, as shown in Fig. 2. A secondary mesh *1. *,

of 12 sides whose vertices are alternately the centroids of the six

adjacent triangles and the midpoints of the six adjacent sides is -

defined with respect to the primary triangle mesh. This is the shaded

region, as shown in Fig. 2. The secondary mesh element is comprised of

one-third of the area of each of the six primary mesh triangles sharing

that vertex, so that each triangle of area A is divided into three equal

quadrilaterals of area a - A/3. This quadrilateral area, a, will be

used to compute the source terms S0 of Eq. 12.

10~
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Fig. 2. Interior mesh point with its six neighbors.
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V WU

For any internal node, the finite difference analog of Eq. 11 is

6
-I o(Vi V +so (12)

where the subscript o represents the point at which the calculation is

made, and i represents the six neighboring vertices. The term wi is the

coupling coefficient for the line joining the vertex I and the center,

and depends only on the nature of the two triangles, having this as a

common side. From Winslow,1 3 the coupling coefficient Is given as

1A (Ci+l/2 + 1-1/2 (13
w a 2 cot + C cote (13)

where the angles e and e ate defined in Fig. 2.

Note that the coupling between two points (Xl. y,) and (x2 , y2) is

symmetric, so that 
44

w12 -w 2 1  (14)

Since the evaluation of trigonometric functions with a computer is

inefficient, an alternate expression for coupling coefficients is

derived in True1 4 and is given as

1{+1/2 -(Xi+l - xo)(XI+l - x) + (Yi+l - Yo)(Yi+l - Yd1

w+ i/2 C r (x - XJ x 1 - xi) + (Yi-x - o{Yi-I - yi (1-)

I- 12 -A)+y)

~** , , #,-°

1/2 -1 0 i-l 1-1 0 i- I



The source term So of Eq. 12 is computed as

6 I
So i+l1/2 ai+l1/2 (16)

i-i,

where Si+I/2 and ai+1/ 2 are the source density and quadrilateral area,

respectively, for triangle i + 1/2 of Fig. 2. The source density of

triangle i + 1/2 is defined by

- £11/2 (17)

and Eq. 16 becomes

6 P 1+1/2 a+/2(18)
So

where Pi+12 is the charge density of triangle i + 1/2.

For each mesh point, Eq. 12 is solved by the iterative method of

successive overrelaxation.15  The difference formula, which must be

satisfie' at each interior point, is given by

6 1 6 i+1/2 1+1/2.
Jul i -m 1 0{ ....- (19 ) , .

o 6

i-

Introducing the overrelaxatlon parameter RHOAIR (0 < RHOAIR < 2), we

have

- 13 -
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6 n+liv=i + So0

Vn + l  V" +RHOAIR - Vn  (20)0 0 6 0

t=1 ~.,

where RBOAIR is a program parameter which is used to accelerate the

convergence for systems that are convergent by the Gauss-Seidel tech-

nique. For each. iteration cycle of Eq. 20, the mesh points are swept
n, n+lnl :

in sequence in which the nearest-neighbor values V i  represent V i
I i

if it already has been calculated, or Vn if it has not.

The program continues to iterate until

l - n
ABS(V+ -V) < EPSILA (21)

where EPSILA is the convergence criterion for the potential solution, S

which is typically set to 10 6, EPSILA is also a program parameter.

Cq.. r ,

3.4 Extension to Problems in the Z-R Plane

Assuming the permittivity e is not constant throughout the region,

Poisson's equation may be expressed as

V". .VV) - (22)
0

Evaluating Eq. 22 in cylindrical coordinates and assuming no variation

in the 6 direction, %

1 r aV V3 (23)r Dar rr 2r +  J z cr Lz ZEE
0

-14-
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Nultiplying Eq. 23 by r,

Comparing Eq. 24 with Poisson's equation in cartesian coordinates,

V V (25)

We see that they are Identical if the following substitutions are made:

(C) r Cre r) (26a)
x-y z-r

(P)X- (rp) -(2b

From Winslow,16 the finite difference form of the x -y coupling coeffi-

cients of Eq. 13 is replaced by

wr I C r r cot +z /r r cot (27)

where r the average radius of triangle I + 1/2, is given by e,

r -~ [r + ri + r~] (28a)

and r the average radius of triangle i 1/2, is given by

r 3 wfr 0+ r i + rir1 o (28b) .

- . %

'% .- 'I,

- 15-

A a ,~. .A .. I. .: -.' " -

•V V

r -S [r°+ i  rl ( "..-- '.

* ,.:,,:.. ,,..,



Now, considering the radial weighting of the charge density in Eq. 26b, £

the source term So of Eq. 16 is modified for cylindrically symmetric

problems as

6 (r P )- ir+l/2 0i+112)

So 1 / a+1/2 (29)
i-i 0

where ri+i/ 2 is the average radius of a quadrilateral at vertex r0 and %',',

is given by

7 2 + 5 (30)
i+i/2 12 1 2 o(3

Therefore, it is possible to use virtually the same programming logic

used in the x - y plane problem by interchanging "z" as "x" and "r" as

y" and by modifying the coupling coefficients and the source terms, as

described by Eq. 27 and 29, respectively.

%
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IV.. CURRENT EMISSION

Once Poisson's equation has been solved, the current emitted from 'V

each cathode point is calculated by the Child-Langmuir space-charge law

for the planar diode.1 7 '18  After the current has been determined,

charge is assigned in the near cathode region and the perveance is

calculated.

4.1 Planar Diode Approximation Near the Emitting Surface

% d W

The emitting surface consists of a set of elementary planar

diodes. Current emission is calculated from each elementary diode by

Childe's law based on the voltages at nodes in front of the cathode S

surface. ,-..

Near the cathode surface, an approximately rectangular mesh is
4.. .:.. -p

generated, as shown in Fig. 3. The spacing "z" of the rectangular mesh I

at node m is determined by

z = (a + b)/(FRT * NAC) (31)

where z, a, and b, are defined in Fig. 3. The program parameter FRT

controls the nearness of the nodes, and the program parameter NAC is the

number of nodes in front of the emitting surface. .
, . N .% ."

It has been determined empirically that, for curved emitting

surface being approximated by a set of planar diodes, two criteria

should simultaneously be satisifed:
1 9

%

%, -. % -
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Fig. 3. Approximate rectangular mesh near the cathode (nac 4).

-18-

.. ,-''.S...



1. The change in the angle of the line of nodes in the rectangu-

lar mesh from cathode point to cathode point should be less

than 4 degrees.

2. The program parameter FRT, which controls the nearness of the .

nodes, should be greater than 8.

The user must be careful that these two conditions are satisfied, since dI

the potentials deviate substantially from the planar diode theory when

they are not close to the emitting surface.

4.2 Calculation of Emission

In a space-charge limited parallel plane diode, the potential - ,

varies as the four-thirds power of distance from the emitting surface, ., o. -, S

.%- .p

4/3
V(x) Cx (32)

where C is a constant and x is the distance normal to the surface. The .d. ,

current density for a planar diode is given as

kV3 2 " C3/2""'"" '" " "

J kV3 2  3 (33 )
2 k
x

where ..

kW 4/9£ c VT

c is the permittivity of free space

n is the electron charge to mass ratio

Near the cathode surface is the previously discussed rectangular
,4

mesh, which is NAC rectangles thick, as shown in Fig. 3. At each node

-19-
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on the emitting surface, the constant C is determined from Eq. 32 for

each of the NAC-1 nodes In front of the cathode. The average C of these

MAC-i nodes is then taken as the C for that emitting node. Letting m

denote nodes along the cathode and I denote nodes normal to the cathode,

the diode constants C. are computed from

NAC-l V

ii(z)413 1(4
Cm - (NAC-1) (34)

At this point, the program laterally averages the calculated C's with "%.

its neighbors to suppress oscillation in C along the emitting surface.

This oscillation arises from nonuniform emission from the cathode sur- %

face. Let C3 be the constant for the emitting node currently being

averaged, C.-,. be the constant for the emitting node below, and Cm+l be

the constant for the emitting node above. C is calculated by laterally

averaging as follows:

(C- + 2C + c.+)
m =  4 (35)

44

If m is an axial node, the lateral averaging is performed as

(+l m (36)
m 2

•U -

For upper edge nodes, Cm is Um,

(2C 
)+ 

CM1)Cm 3 FeV

.20." .*4.,
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In the first few iterations, Cm will be too large, since space-charge

depression has not yet occurred in front of the emitting surface. To

correct this problem, the program next averages the diode constant Cm

with the Cld from the previous cycle by the equation

-old + Y C - Cold (38)
m m m 

where y (or CGAHMA) is a program parameter. A typical value for CGAMMA

should be less than 0.3, and it should be made smaller for a thinner

rectangular mesh near the cathode. Although a small CGAMMA will prevent

unstable numerical oscillations in the current between cycles, choosing

a CGANMA too small will make the program go through too many cycles

before the solution converges. -

If negative potentials exist in front of the emitting surface, C
m

will become negative. To avoid this situation, the program will compute

as
m

C - SSSF m C (39)Cm m

where SSSF is a program parameter which decreases the emitted cur-

rent,2 0 and is typically set to 0.2.

The temperature limited value of Cm is determined from Eq. 33 as

(FJLMI~ 2/3

Ctemperature limited =  (40) .

- 21 -
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where FJLIMI is the current density in a2s and is given by the user.

If C is greater than this value, then C is recomputed as. •

m = Ctemperature limited 
(41)

where the temperature limited value of the current density is given to

the program by the user.

4.2.1 Temperature Limited Emission

The current emitted from the cathode may be set to a fixed

value. The program parameter, CURREN, is the amount of current in amps

emitted by the cathode. If CURREN is greater than zero, the program

will compute the current density, JCUR, at the emitting mode m by

CURRENJCUR =(42) 
_

m NODES CAREA(m

where CAREAM is given in Eq. 53 and NODES is the number of emitting

points. Once JCURm has been computed at the emitting node, the emission

constant, Cm' is recomputed from Eq. 33 as

2/3R. -2/

cm =  k =(43)

%

and the program proceeds normally.

-22-
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4.3 Program Convergence

The computer program decides convergence in the iterative pro- _

cedure by the relative change in Cm between major current cycles (see

Fig. 1).

The problem is assumed to have converged when

DCBAR < ECBAR (44)

where f OKnc ix~[(o:l - m);DCB~AR MAX ABS E im/ (45) :

and ECBAR is a program parameter specified by the user.

The user may also limit the number of major current cycles to be

performed by specifying the program parameter I4AXCYC, which is the p

maximum number of current cycles to calculate.

4.4 Charge Assignment in the Near-Cathode Region 1--

Near the cathode, it is assumed that planar diode theory .'%

applies. Charge assignment to nodes 1 through NAC-l of the rectangular

mesh adjacent to the cathode are obtained by multiplying the charge

density calculated at the node by the cell area times a special weight-
,.-.-. ..

ing function. This technique of providing high accuracy near the cath-

ode leads to a significant improvement in current calculations.

For a cathode mesh being approximately rectangular, one my assume

that the problem Is one-dimensional.2 1  Poisson's equation for the one- *..

dimensional case reduces to

*% .*
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a m - X (46)
ax2 0

where x is the direction normal to the emitting surface. The space-

charge density for a planar diode can be obtained f row Eq. 46 and is

given as ,.1

P (x) - 9 4 o -2/ (47)

Using Eq. 47, the source terms for nodes 1 through NAC-1 in the near

cathode region are computed as ~

_Mt P(x) ADODL(8

0

where M2 is a special weighting function and is given by

4/3 ~4/3 43

ML t* 2 /3  (9

ADOD is the dodecagon area of the Lth node adjacent to the emitting
L

point and is given as

N

6
ADOD ) a. (50) . . 1

* where aj is the quadrilateral area for triangle I of Fig. 2.

*According to True,2  the use of the special weighting function Mt

is introduced because the potentials calculated by the finite-difference

- 24-
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method do not agree with the theoretical values predicted by Child's

law. This discrepancy is partly due to the truncation error In the

f inite difference approximation and that the charge density Is assumed

not to vary within the cell.

4.5 Perveance

Perveance is defined as

m3/2

VA
CA~

where I is the total beam current, and VGA the cathode to anode voltage. .

The total beau current I Is the summation of current emitted from

each individual ray and is given by

iI J CAREA (52) e

whrm ntecren est o h mt dide an.4-, s h

whreori thobem creretsenty for the xt diodlae, Cand ARE is s the

length of the emitting segment, as shown in Fig. 4. For problems in the ..

z - r pae EAU is a figure of revolution about the z-axis, as shown

in Fig. 4b, and is computed by the equation for a frustum of a right

circular cone,

(a+ b) '
CAREA - w(Rl + R2) (a32

-25-4
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where I to the radius of the lower base, and R2 is the radius of the

upper base. This formula was chosen so that when determining the area

of a spherical or linear cathode, the same formula could be used, thus

keeping the programing logic simple.

P. %

26.
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car,

M-1V

(a) Emitting surface area for a problem represented in the x - y plane.

%

%

Surioc F

~I

R1 R2

z-oxis

% %

.41

% .%%%%%. ".%

% % % %%'% J*

(b) Emitting surface area for a problem represented in the z - r plane. .22

Fig. 4. Emitting surface areas of the cathode. 4
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V. RAY TRACING AND SPACE-CHARGE ASSIGNMENT

Once the program has solved Poisson's equation and baa computed

current, Its final task Is to:

1. Compute the particle positions of the electron from the

Lorentz force equation.

2. Assign charge to the mesh.

5.1 Relativistic Equation of Motion

The equations of motion are derived from the Lorentz force equa- P

tion, ~

where e is the charge of the electron, E is the electric field obtained

from the solution of Poisson's equation, v is the velocity of the elec-

tron, and 3 io the external magnetic field given by the user. The

particle's relativistic mechanical momentum may be expressed

Pma s myv (55) ~ .

where u is a pseudo particle velocity and y is the relativistic factor

given by

(I .2~1/2 (6

* 22
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Separating Eq. 54 Into Its components in cylindrical coordinates, we

have

- hie + Vez]+Yve

" -[E + v TB ]+ r e (57a)

au
z - -[Ez - veB r ]  (57b)

where n - e/m (the derivation of Eq. 57 is given in Appendix A). The

last term of Eq. 57a represents the centrifugal acceleration, which

results from the motion of the particle about the axis. Note we have

assumed that the problem has cylindrical symmetry and the magnetic field

has only radial and axial components.

The 0 component of the velocity is computed by

2

ve  r[ - - (58)2y - zc r2 "'.

where Bzc and rc are the axial magnetic field and radial position, o.*-*

respectively, at the starting position of the trajectory. Equation 58

is known as Busch's theorem,2 3 which makes it possible to determine the

angular velocity of an electron about the axis of a symmetric system

without requiring a detailed knowledge of the form of the electric

fields.

5.2 Electric Fields

The electric fields, used in the Lorentz force equation, are

computed from

-29-
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E - VV (59)

The components of the electric field in cylindrical coordinates assum-

ing 0 symmetry are

Emav E
r ar z az (0

To compute the electric field at point P of Fig. 5, the first step is to

calculate the first and second derivatives at the nearest node. In Fig.

5, the nearest node is labeled 0, and the six adjacent nodes are labeled .v/

1 through 6. Expanding in a Taylor series about node 0 to each of the

six neighbors, the following set of equations is generated:

33
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avo av 0a 2 V0
AV- Akl i+ Ak2  r + Ak3 -2

a2 Va2
0 0 k 1 6 (61

+ Ak4 3ir + Ak5 r ;2 , " 6

where

AV -V -V
k k 0

Akl 'k -zo4,

r r
Ak2 rk r o p ..-.. b

akJ -2

A

aa

k2

Aks -2

This system of equations is overdetermined, since there are five unknown

derivatives and six equations. A method for the treatment of overdeter-

mined linear equation systems is the method of least squares.

A residual vector r may be defined by rearranging Eq. 61,

2 %
aV aV a2V ._%0 0 0 '-

r AVk Akl az Ak2 ar AU 3T2-
k° k = 6 (

a2 Va2

Ak4 z~ r Ak5 a 2 0 k 1, 6 (62) I
ara

* 'a
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which we would wish to be zero. The result, in general, will not be

zero, and the least square solution of Eq. 61 minimizes the Euclidean

norm of the residual vector.

6
r rk (63)

k-1 kA

After the derivatives at node zero have been computed, the components of

the electric field at point P are calculated by

E - -(r r+ ( - (64)
r .~r03rTV p2 parz

av a2V a2 V,
E _ o + (r r - (65)

0 0

5.3 Magnetic Fields .

The program accepts values of Bz measured experimentally along the
p. % %

axis from which off axis values of Bz and Br are calculated. We can kP.-.

express the magnetic flux density in terms of a magnetic vector poten-

tial,

B V x A (66)

and expanding in axisymmetric cylindrical coordinates, we have

A... .. .*%.

Br  - (67 a) "''"':

r~ 3.
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and

r A e )
-

B 8 r (67b)

The magnetic vector potential A.(r, z) can be computed from M

Ae(r, Z) f rBz(r, z) dr (68)Ae r ) =r o Id-

Expanding the magnetic flux density in a Taylor series near the axis and

assuming the second term is negligible with respect to the first term, b

integrating Eq. 68 results in
*D". .Pv

rB (0, Z) "'..
A,(r, z) z (69)

Substituting Eq. 69 into Eq. 67, the components of the magnetic flux ,. ,

density are
r .%. 5'.

r"aB(0, Z)
r zBr 2 az

*'-. - . ,.

and ,

B -B(0, z) (71)
z

where

B - B ,"5 ' * .
B(O, z) - Bi + (z - zi) z i+l z (72)

i+l .iL %
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and

B (0, Z) B - B
z Zi+l i (73)

In Eqs. 72 and 73, i and i + 1 denote the measured values of B at the

nearest points to the left and right of the z-position, respectively.

5.4 Time Integration of the Equations of Motion

The time integrator used in. this program is a finite-difference

approximation leapfrog scheme.24  This method leapfrogs positions and

No
velocities in time, as shown in Fig. 6. Positions and fields are "

defined at integral time levels (t - 0, DT, 2DT, 3DT, ... ) and veloci-

ties are defined at half-integral time levels (t - l/2DT, 3/2DT, ) '' .

Positions and velocities are obtained by integrating "- .- *

dr dz (7
=ur t uz

and

dv F dv F """*'.r r z z(74b)
dt m dt m

where Fr and Fz are the forces for an electron with charge -e moving in "4
+ +

an electric field E and a magnetic field B.

.**- 3
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1I-V~rRT% rW-W-WrW ~w KWW~W~f WVY-W

update velocity update velocity

update positio update position

n-1 n-1 /2 n n+1 /2 n+1 n+3/2

(r, z), F4  v (r,z), F v (r,z), F V

Fig. 6. The equations of motion are integrated forward in time __

using the second order leapfrog scheme. Positions at
time level n - 1 are updated using velocities at time
level n - 1/2, velocities at time level n - 1/2 are
updated using forces at time level n, and so forth.

2 ~

F m e(E +e (75a)r r v zJ rT

F -- e(E z- v Br) (75b)

The pseudo velocities are predicted at the (n + l)th time step by

n n+1
n+1/2 n-1/2 Fn +

ril/ n-/ + F) At (76b)
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The program then averages the pseudo velocities and computes the true

velocity of the particle,

-n1/ 1-/
;n (77a)r n

- n+1/2 + u1/2
z (77b) , .

z n

where

Y n . + '2 V(r, zn) (78)

C

' -. '. %,*

and

-n+1/2 n-1/2 _Fn& t (9 '." "

u U + -- (79)

V(rn, z n) in Eq. 78 is the potential at the electron position (rn, z).

and u of Eq. 79 is the first order approximation of the pseudo velocity

which is used in Eq. 77.."

The electron positions are now updated by

rn+l = rn + gn t (8Oa)
r

zn+l z + VA, n : (80b)
zV .. , ...
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This simple second order scheme was chosen because it is a good

compromise between accuracy, stability, and efficiency. The compromise

between accuracy and efficiency can be altered in two ways: either by

using a high order scheme and larger time step, or by using a low order

scheme and smaller time step. The higher order schemes need force

values at several time steps, thus having more operations per time

step. The leapfrog scheme is simple, and is more efficient and has less

storage limitations than a higher order method. The accuracy of this

scheme is more than sufficient to integrate the Lorentz force equation.

5.5 Initial Conditions for the Equations of Motion

Initial conditions for the electron trajectories are determined

from space-charge limited parallel plane diode theory.

The starting position of the trajectory is the point halfway

between nodes NAC and NAC-l and is denoted by (r, z) in Fig. 7. It is -

assumed that the electrons initially proceed normal to the cathode until
they reach (r, z). From Child's law and the kinetic energy equation,

the time needed to reach this point is

1d /3 ,'

to 0 -)1/2 (81) *

where

d z NAC (82)

k% % 5
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L

Edge Trajectory

(r, z

0 Regular Trajectory

~_ (r z ,

E,

1=1 1=2 1=3=NAC

Fig. 7. Starting position for the electrons at the emitting nodes.
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The time step, At, used in integrating the equation of motion is calcu-

lated by

(t FRDT)
At - (NAC - 1) (83)

where FRDT is a multiplicative constant by which At may be fractionally .
A, :

adjusted.

The initial position (ro, zo) and initial velocity (Uo, u)zo

are, respectively, calculated by

z - z + t3[ri113 /2 cos 6 (84a)

r c + sin e (84b)

3/2

u 3t2 [1 ne]  cos e (84c)

u 3t 2 [Z -j sin e (84d)Uro o9

where zc and rc are the coordinates of the emitting points, and 6 is the %

angle of the line connecting the nodes I through NAC.

5.5.1 Choice of Time Steps

The program has the capability to change the time step, At, when

the magnetic field becomes strong enough. The choice of the time step

must be related to the characteristic physical frequency of the problem,

which in this case is the Larmor period,

-39- -- '
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- eB (85)
c m

To accurately resolve a Larmor period, there should be at least 30 time

steps per period. When a magnetic field is present, the code will check

to see if there are at least 40 time steps per period. If there are not

enough time steps, At will be recomputed as

A t n e w  2w (86) Iv'
40 n B %

, A a

and the unit charge, DQ, of Eq. 88 is recomputed as

Dnew DQold [itnow (87)

5.6 Charge Assignment

The charge distribution of particles whose positions vary continu- -

ously with time is replaced by a finite set of charge density values.

After each time step in the integration of the equations of motion, a

unit of charge, DQ, is assigned to the 3 nodes of the triangle which

contains the electron at that time. This sharing of charge with the

three nodes "smooths" the finite charge density distribution and weakens

the mesh dependence of the problem.
25  ., ..

The unit of charge, DQ, which is assigned to the mesh in the x -y

plane is computed from

-40-
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-1 At
" (QSTEP c (88a)

and in the z - r plane,

-1 At
(88b) . .

00

where I is the individual current of the ray, At is the time step, c is

the permittivity of free space, and QSTEP is a program parameter which

will be discussed later. For trajectories which proceed along the z- r

axis, radial weighting is removed and DQ is calculated as if it were an p

x - y plane problem, "

-I At
DQ QSTE o (88c)

The charge DQ is assigned to the nodes of the mesh by the following

method. Each trajectory segment of length L is divided into QSTEP

segments in which DQ is positioned at the center of each minor segment, .- ...

as shown in Fig. 8. After each minor time step in the trajectory calcu-

lation, DQ will be in a triangle of area Atotal The nearest node

routine determines which triangle contains the electron (this routine is

described in detail in True's thesis26 ). Using the electron's position

and the 3 corners of the triangle's vertices, the triangle is subdivided ,

into 3 triangles of area AI , A2 , A3 , as shown in Fig. 9. Introducing

the charge assignment function, Wi, the source term, Si, associated with

these 3 nodes will have DQ added to them by the amount

-41-

%00'* %' % %%

N ,.



~Z n+1 4

DQ I

Fig. 8. DO centered at each minor segment of the 6
trajecatory segment of length L (QSTEP -4).
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s i - i + Wi DQ (89)-

where

. A (90)
Atota1

and i - 1, 2, 3. Note that as the electron gets closer to a particular

node, more charge will be assigned to that mesh point, since the charge 'A

assignment function W is larger for that node.

Once all the charge has been assigned for each electron trajec- .

tory, nodes along the z-axis will have their radially weighted charge v . -

removed by

6
Vi

s [iil - (91)
(z-axis) (z-axis) 6

--x -y,

where wi are the coupling coefficients determined by Eq. 15. Thus, the

charge laid down on the axis is treated as if it were an x - y plane

problem.
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VI. EVALUATION OF THE ELECTRON TRAJECTORY PROGRAM I

In this section, the validity of the deformable mesh analysis to

space-charge flow problems is investigated. Three space-charge-limited

electron flow problems are considered and the results of the program are

compared with theoretical and experimental results.

6.1 Pierce Gun 4 -e .-

The first space-charge flow problem considered is the rectilinear- S* .

flow Pierce gun, shown in Fig. 10. This case is ideally suited in test-

ing the electron gun program, since the computed values of voltage, '..'.'.

space-charge, electron trajectories, current density, and perveance can .

be compared to theoretical values. Wk. ".9...

In a Pierce gun, the planar diode is truncated and two focus ... --.

electrodes are positioned along the beam's edge in order to establish S

the four-thirds power variation in voltage with distance. The voltage

distribution in the charge-free region is given by
2 7  -'

)4/3
V = V() cos (92)

d? 3

where Vo, R, d, and 8 are defined in Fig. 10. The voltage inside the S

beam is determined from space-charge-limited parallel-plane diode theory

as is given by *"-,.-

4/3

V V(d) (93)
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For the Pierce gun solved by computer analysis in the x- y plane, the

cathode and focus electrode are fixed at zero volts, the anode is held

at 1000 volts, and the cathode to anode spacing is 1 centimeter. The

cathode is modeled by 12 elementary parallel-plane diode segments and

the near-cathode region extends three nodes in front of the cathode

surface.

The logical diagram of the Pierce gun generated by AUTOMESH is

shown in Fig. 11 and the resulting relaxed mesh is shown in Fig. 12.

The results of the deformable mesh solution are given in Table 1, and a

plot of electron trajectories and equipotentials are shown in Fig. 13.

The values of perveance, average current density, and radial deviation

of electron trajectories from the computer analysis agree well with

theoretical values. The values of current density calculated for each
le

emitting node are in close agreement with those predicted from theory,

except for the upper edge node. The cause of the errors associated with

the upper emitting node results from the discrete computer modeling

along the beam's edge boundary.
2 8

:.. ..

For the edge trajectory of the Pierce gun, the space-charge is

assigned to nodes along the beam's edge. Correct space-charge assign-

ment for the beam edge would assign charge to subcells 4, 5, and 6 and

no charge to subcells 1, 2, and 3, as shown in Fig. 14a. However, the

program assigns a single value of space-charge to the node, which

results in the space-charge density being uniformly distributed through-

out the dodecagon area surrounding the node, as shown in Fig. 14b. As a .

result, the space-charge density is lower on the beam edge, which causes

the potentials to be higher than those within the beam. Since the
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Fig. 11. Logical space diagram for the planar Pierce diode.
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Table. 1. Computer results for the planar Pierce gun.

Theoretical Calculated Percent
Value Value Error

Current Density 7.381 0"2 1 743 x -2  0.74%

Perveance 2.334 x 10-6 2.351 x 10- 6  0.741

Current Density At The Emitting Nodes

Emitting Theoretical Value Calculated Value Percent
Node (amp/ sq. m) (amp/ sq. m) Error

1 7.381 x 10-2 7.52 x 10-2 1.889

2 7.381 x 10-2 7.436 c 10c 2 0.753
, %

3 7.381 x 10-2 7.378 x 10 2  -0.033

4 7.381 x 0 .2 7.402 x 10-2 0.289

5 7.381 x 102  7.413 x 10- 2  0.435

6 7.381 x 10. 2 7.422 % 10-2 0.567

7 7.381 x 10-2 7.436 x 10- 2  0.751

8 7.381 x 102 7.446 x 10"2 0.881 .
9 7.381 x 10"2  7.476 x 10-2 1.294

10 7.381 x 10 . 2 7.299 x 10-2 -1.109 , ** L*

11 7.381 x 10-2 7.298 x 10-2 -1.119 - -. -

12 7.381 x 102 8.047 x 10-2 9.02

Maximum Radial Deviation In Electron Trajectories

Emitting Theoretical Calculated Percent .C ->
Node Deviation (cm) Deviation (cm) Error " -.

1 0.0 0.0 0.0

2 0.0 -4.20 x 10-4 -0.464 "'-' -
.\ .

-33 0.0 1.2 X 10- 0.710 I l

4 0.0 3.727 x 10 0.137 .

5 0.0 8.636 x 10-4 0.237 %'%

6 0.0 5.545 1o-4 0.122 Sq

7 0.0 1.045 x 10"3  0.191

8 0.0 8.364 10 3  0.131 %.

9 0.0 2.327 x 10"3  0.319 - :.

10 0.0 -2.182 x 10.3  -0.267

11 0.0 1.009 K 10.  0.122

12 0.0 2.727 x 10- 0.003
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current density is calculated from Child's law, the higher potentials on

the beam edge result in an increased emission current density for the
.-

upper node, which causes an increase in space-charge density along the

beam edge. The increased space-charge density along the edge of the

beam results in depressed beam edge potentials. The final result in the _

emission current density of the upper node is greater than the theoreti-

cal value in order to satisfy the beam-edge boundary conditions.

The errors encountered in the upper emitting node of the planar

Pierce gun result primarily from the space-charge density being uni-

formly distributed throughout the dodecagon area of the beam edge

node. It has been suggested2 8 that, by increasing the.mesh density at

the beam edge, the errors in the emitted current density of the upper

edge node will be reduced. Figure 15 shows a mesh that has a small area .

"guard" mesh just above and parallel to the edge of the beam. Since the

dodecagon area of subcells 4, 5, and 6 is now a better approximation to

the total area surrounding the beam edge nodes, the space-charge density

assigned to these nodes is a better approximation to the correct values

than those before. Table 2 gives the results of the planar Pierce gun

using the beam edge guard mesh. Comparing Tables 1 and 2, it is seen

that an overall decrease in errors results when a thin guard mesh is

used. A plot of the electron trajectories and equipotentials for the

planar Pierce gun using a beam-edge guard mesh is shown in Fig. 16.
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Table 2. Computer results for the planar Pierce
gun using the beam edge guard mesh.

Theoretical Calculated Percent % ,

Value Value Error

Current Density 7.381 x 102 7.409 x 10-2 0.39%
6.6 03

Perveance 2.334 x 10-6 2.343 x 106  0.39%

Current Density At The Cathode Surface .

Emitting Theoretical Value Calculated Value Percent

Node (amp / sq. m) (amp/ sq. m) Error

1 7.381 x 10-2 7.520 x 10.2 1.86%

2 7.381 x 10-2  7.438 x 10-2 0.78%

3 7.381 x 102 7.382 x 102 0.01% .

4 7.381 x 12 7.406 x 102  0.34%

5 7.381 x 10-2 7.416 x 10.2  0.48%
[-. .3' 3 -.'

6 7.381 x 102  7.427 x 10-2 0.63%

7 7.381 x 102 7.438 x 10.2  0.78%

8 7.381 x 102 7.451 x 102  0.95% "

-2 .. 3

7.381 x 102 7.477 x 102 1.3% .

10 7.381 x 102  7.348 x 10-2  0.44%
2 .-

11 7.381 x 102 7.2 x 102  2.45% ~.%-- %.-.W,

12 7.381 x 10"2  7.52 x 10.2  1.88% .pJ.
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6.2 Spherical Diode

Another case, which Is also ideally suited in testing the electron

gun program, Is the spherical diode.29  The spherical diode consists of '

two concentric spheres in which the inner surface of the outer sphere is

coated with an emissive material and the inner sphere is made positive.

The current, which by symmetry is everywhere radial, flows between

the spheres and is given by

-6 3/2
29.34x10 V (94)

ttal ()2

where

"vi'

a - - 0.3 2 + 0.075 3 0.00143 4 + ... (95)

* .

and I

S% .*--

Figure 17 shows the geometry of the diode, which consists of a Neumann

boundary along the z-axis. Since the problem is axisymmetric, the two

half-circle boundaries are actually figures of revolution about the z-

axis. The logical space diagram for this example is shown in Fig. 18,

and the relaxed mesh is shown in Fig. 19.

S%%
I. -56-

° P.p % % % % %

% % P '.- '."-'.
..

%,-



I-

-
4-)-

41'

-4 0

-4-

4A 0
40 r_

LA6

'P eI , if 0r - m- e OJ r ,-

-:0 44.4



N.

inp '

%Jh %d

% A

%%

* 7'. _ -_~.Analysis>

Region

IX, 1\X / W- . V,

58%

6 % % %.
%S ~S ~

J% -'



.V 4CM.

rt%

54I 4..I~N

Nb>
~

0) I- -

o
*~% i-'.

:4
%

o *-* %
I-I

a)

*o
o 4.J -

H '~' ~

o
54.1

1.~ ~

j p
(J ~ -4....

H .~ ~v
0) ,:~ ..~' -

U 10x @1
I
I

I '-4*

I
4 - . S

z S 6

*
o -.

I
* 4

4.

~-. J

- 59 -

J. ~

* 4

- ~ . . -



Table 3 compares the results of the computer analysis with that of

the theoretical analysis, and the plot of the electron trajectories and _

equipotentials are shown in Fig. 20. Again, the values of emitted

current and radial deviation of electron trajectories produced by the

analysis of the computer agree very well with that of theory.

Table 3, Computer results for the spherical diode.

.p . l

Theoretical Calculated Percent -

Value Value Error

.'w" ., ..

\ .- .'-

Perveance (microperus) 11.675 11.7366 0.53%

Average Error in Current
Density At The Cathode 0.91%
Surface (amps/sq m)

Average Error In Radial :-
Deviation of 1.18%
Trajectories

• -.. Z,].,

I6

U',.', 
,€ °
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6.3 Mod-I Gun

In each of the cases discussed above, analytical solutions were -.

available to verify the results of the computer program. However, for

guns of practical interest, analytic solutions are not available.

Therefore, a comparison of computed and experimental results for actual I

guns are of interest. In this section, evaluation of the simulation

capabilities of the computer program is conducted using an experimental .Z .1

gun design (MOD-I) developed at Bell Telephone Laboratories by R. D. -

Brooks (November 1969).

The dimensions of the MOD-I gun design are shown in Fig. 21. The

geometry of this gun is shown in Fig. 22, and the logical diagram is

shown in Fig. 23. The resulting relaxed mesh is given in Fig. 24, and

Fig. 25 shows the plot of equipotentials and electron trajectories.

Note, the cathode is graded such that the diode segment lengths are

smaller towards the end of the cathode. This grading will better model ...

the cathode, since a large percentage of the total beam current is "

emitted from the cathode edge. -
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Comparisons between calculated and experimental beam parameters %

are tabulated in Table 4. The accuracy of the location of the beam &

minimum and the value of the perveance computed by the program is in
,W4.

good agreement with the experimental results. The discrepancy between l'-rArs

the experimental and computer results might be in part due to experimen-

tal measurement error and small dimensional differences between the gun

tested by Brooks and the gun dimensions used in the computer analyses. -

The discrepancy in the measured and calculated beam diameter at the beam "A1

minimum is probably due to thermal effects. The problem of accurately

computing the effects of thermal-velocity spread at the cathode is not

modeled in the computer program. _

Table 4. Summary of results for the 2D axisymmetric MOD-I gun.

Experimentally Computer Percent

Measured Results Error

Perveance

(mi croperv) 1.63 1.604 1.6%

Beam

Minimum
Location 6.655 6.833 2.5,

(cm)

Beam

Minimum
Diameter 0.8585 0.9305 8.4%

(cm)
6 W!
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VII. CONCLUSIONS

As was shown in the preceding section, agreement with theoretical I-

and experimental results with those of the computer program is very

good. Perveance error is in the one percent range, and error in current

density along the emitting surface is typically a few percent or less.

The results of Chapter VI indicate that the overall performance of the - ..

deformable mesh program is very good.

Some areas for further work to improve the computer program are: .

1. Accurate representation of magnetic fields. The accurate

representation of such fields might be improved by including

higher order terms in the Taylor series expansion, or using an

elliptic iategral method for representing axisymmetric mag- %

netic fields. 3 0  Another alternative would be to use the

p
POISSON group programs to solve the magnetic fields. These .

sets of programs were originally written to solve the magneto-

static vector potential problem using nonlinear iron.

2. As mentioned in Section 6.3, the effect of thermal-velocity

spread at the cathode is not included in the program. A 4,.- .

method of modeling thermals could be incorporated into the

code.

3. Since determining the positions of grid wires is tedious, the

code could be modified to generate spherical grid data, addi-

tional guard lines, and computation of grid interception.

.z
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APPENDIX A

DERIVATION OF THE EQUATIONS OF MOTION

The position of a particle can be described in cylindrical coordi-

. .. .

nates R, 0, z by the position vector _

•k A A N'.. \'.*

r -Rr + zz (A.1)

where r is a unit vector in the x - y plane and z is the unit vector in

the z direction.

The velocity and acceleration vectors are found by differentiating

Eq. A.1,

V dr Rr rT~z z (A.2)•~ " dLF + ;r z; + z "" t

Note, this invovles derivatives of unit vectors which are ,...

Tt e (A.3a)

andt

nd;d
| a.

dO - _r (A.3b)

The unit vector z does not change in direction, so its time derivative

is zero. Substituting Eq. A.3a into Eq. A.2, the velocity vector is ..

given by

Qp
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V Rr +V + ZZ (A.4)

where

V -R; (A.5)

Differentiating Eq. A.4 results in the acceleration vector

a R -r;2]^ + +61+zz (A.6).A

The equations of motion are derived from the Lorentz force equation,

dt~~~~~. e[E-''-x'A A.) ONN

+ +

P -Y [ u ( A.8)

The velocity vector u is a pseudo particle velocity where

+

U Y ''- . YV (A.9) -

where Y is the relativistic factor given by

Substituting Eq. A.8 into Eq. A.7 gives%

P
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du e + u(x lB]

dt MLE+ (A.11

Setting Eq. A.6 equal to Eq. A.11 and separating into its cylindrical -

components results in the relativistic equations of motion, which are i i
used in the computer program to solve for the particle's position and ":

velocity.

*du r ~ z
r= [ +2 (A.12a)

dvF ei
_Z = E (A.12b)

d t - n z +- U.y I

du uU uB u
zBr r z rU (A.12c)dt - n yr

where n elm. • 6

• "
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